## Conversion

# Now synthesize your FIR filters using high-school algebra

**In this second part of a two-parter, the Filter Wizard aka Kendall Castor-Perry turns the process of factorizing the polynomial representation of an FIR filter into a product of quadratic and linear factors on its head and builds up complete FIR filters from small, easy-to-understand pieces.**

**The story so far**

In Part 1 we took a regular FIR filter design and wrote down the filter coefficients in

polynomial form to get equation [1]:

Then we found all the roots of this polynomial, and used them to write down the

factorized form of the polynomial:

As a parting shot, I pointed out that there are three quadratic terms there with unity coefficients of z^0 and there are three deep nulls in the gain response of the filter, as was shown in the figures from Part 1. Lets take a deep breath and examine the responses of all these individual linear and quadratic factors, to see if there are some clues there.

Figure 1 shows the individual responses, treated as two- or three-tap FIR filters, of each of the factors in parentheses in equation [2]; the five quadratic factors marked as q1 to q5 and the four linear factors and L1 to L4. Its quite a jumble of a graph, but you dont have to be very awake to see the major salient detail: three of those quadratic factors have deep notches in the frequency response. These are indeed the three factors whose constant (z^0) coefficient is unity!

So, heres the first takeaway. In an FIR filter whose stopband contains a number of sharp nulls, each one of them comes into being because the response of one of the polynomials quadratic factors falls to zero at one frequency. Just so that we dont jump to conclusions about the particular form the factor needs to have, lets do some more algebra to make sure. Are we having fun yet?

**Please login to post your comment - click here**

- No news

- FDSOI carries on despite ST re-org, says COO
- Spice up your Pi for IoT development
- ST exits STB chip business, plans lay-offs
- NXP embraces 28nm FDSOI for MCUs
- The analog way for quantum computing
- Report: Analog, TI both pass on Maxim purchase
- Vesper reveals GloFo as microphone maker
- Quantum computing near and disruptive, warns academic at Davos
- Analog Aficianados and the electronic construction kit
- Microphone glitch hit ST's analog, MEMS sales in 2015
- Will Apple drive analog ICs?
- Atmel drops Dialog, says Microchip's takeover bid is better
- Startup develops room-temp metallic "velcro" glue
- Intel protege pitches wireless SoC for IoT
- Samsung gives ground over chip workers' cancers

- Analog ASICs: A Financially Viable Alternative to Standard Products
- IndustryÂ’s First 0.8μVRMS Noise LDO Has 79dB Power Supply Rejection Ratio at 1MHz
- The Advantages of Capacitive vs Optical Encoders
- High Voltage CMOS Amplifier Enables High Impedance Sensing with a Single IC
- Engineering Change Order and Implementation
- Low Power Bi-directional Level Shifter
- Haptic advancements put us in touch with complex systems